Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure.
نویسندگان
چکیده
Cardiac hypertrophy in response to pressure overload is initially beneficial but eventually leads to heart failure, a major cause of morbidity and mortality in the Western countries. Although abnormalities in left ventricular (LV) diastolic filling are early features associated with pressure overload-induced LV hypertrophy, the molecular mechanisms regulating transition to diastolic heart failure are poorly understood. We analyzed global changes in gene expression in 12-, 16-, and 20-month-old spontaneously hypertensive rats (SHR) and their age-matched controls, Wistar Kyoto rats, using DNA microarrays. In SHR, a progressive LV hypertrophy was associated with increased expression of hypertrophy-associated genes including contractile protein and natriuretic peptide genes. Echocardiography indicated that 16-month-old SHR had features of diastolic dysfunction leading to diastolic failure at age 20 months without significant changes in LV systolic function. Comparison analysis revealed that the extracellular matrix genes strikingly dominated the list of altered genes after transition to the heart failure, whereas there was no major shift in gene expression patterns involved in calcium homeostasis and neurohumoral activation, as well as myofilament contractile and cytoskeletal proteins. The microarray analysis also revealed differential gene expression of several novel factors, such as thrombospondin-4 and matrix Gla protein, as well as unknown expressed sequence tags. Our data show that transition from LV hypertrophy to diastolic hypertensive heart failure is almost exclusively associated with progressive remodeling of the extracellular matrix and provide new insights into the pathogenesis of hypertrophy by suggesting existence of novel regulators of LV remodeling.
منابع مشابه
Matrix gene expression and decompensated heart failure: the aged SHR model.
Impaired functional performance despite hypertrophic enlargement, and an excessive accumulation of extracellular matrix, are hallmarks of the decompensated failing heart. Age is the leading risk factor for heart failure, and there is evidence suggesting that a number of age-associated changes in the cardiac phenotype predispose the heart to failure. The spontaneously hypertensive rat (SHR) exhi...
متن کاملExcessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats.
OBJECTIVES We sought to elucidate how the local activation of matrix metalloproteinases (MMPs) is balanced by that of the endogenous tissue inhibitors of MMP (TIMPs) during left ventricular (LV) remodeling. BACKGROUND Although it is known that the extracellular matrix (ECM) must be altered during LV remodeling, its local regulation has not been fully elucidated. METHODS In Dahl salt-sensiti...
متن کاملAlterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components.
The failing heart is characterized by impaired cardiac muscle function and increased interstitial fibrosis. Our purpose was to determine whether the functional impairment of the failing heart is associated with changes in levels of mRNA encoding proteins that modulate parameters of contraction and relaxation and whether the increased fibrosis observed in the failing heart is related to elevated...
متن کاملMyocardial osteopontin expression coincides with the development of heart failure.
To identify genes that are differentially expressed during the transition from compensated hypertrophy to failure, myocardial mRNA from spontaneously hypertensive rats (SHR) with heart failure (SHR-F) was compared with that from age-matched SHR with compensated hypertrophy (SHR-NF) and normotensive Wistar-Kyoto rats (WKY) by differential display reverse transcriptase-polymerase chain reaction. ...
متن کاملEarly dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure
Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 45 5 شماره
صفحات -
تاریخ انتشار 2005